A recA null mutation may be generated in Streptomyces coelicolor.
نویسندگان
چکیده
The recombinase RecA plays a crucial role in homologous recombination and the SOS response in bacteria. Although recA mutants usually are defective in homologous recombination and grow poorly, they nevertheless can be isolated in almost all bacteria. Previously, considerable difficulties were experienced by several laboratories in generating recA null mutations in Streptomyces, and the only recA null mutants isolated (from Streptomyces lividans) appeared to be accompanied by a suppressing mutation. Using gene replacement mediated by Escherichia coli-Streptomyces conjugation, we generated recA null mutations in a series of Streptomyces coelicolor A3(2) strains. These recA mutants were very sensitive to mitomycin C but only moderately sensitive to UV irradiation, and the UV survival curves showed wide shoulders, reflecting the presence of a recA-independent repair pathway. The mutants segregated minute colonies with low viability during growth and produced more anucleate spores than the wild type. Some crosses between pairs of recA null mutants generated no detectable recombinants, showing for the first time that conjugal recombination in S. coelicolor is recA mediated, but other mutants retained the ability to undergo recombination. The nature of this novel recombination activity is unknown.
منابع مشابه
The endonuclease activity of RNase III is required for the regulation of antibiotic production by Streptomyces coelicolor.
The double strand-specific endoRNase RNase III globally regulates the production of antibiotics by Streptomyces coelicolor. We have undertaken studies to determine whether the endoRNase activity of S. coelicolor RNase III or its RNA binding activity is responsible for its regulatory function. We show that an rnc null mutant of S. coelicolor M145 does not produce actinorhodin or undecylprodigios...
متن کاملMedium-dependent phenotypes of Streptomyces coelicolor with mutations in ftsI or ftsW.
Streptomyces coelicolor A3(2) ftsI- and ftsW-null mutants produced aerial hyphae with no evidence of septation when grown on a traditional osmotically enhanced medium. This phenotype was partially suppressed when cultures were grown on media prepared without sucrose. We infer that functional FtsZ rings can form in ftsI- and ftsW-null mutants under certain growth conditions.
متن کاملIdentification of a gene negatively affecting antibiotic production and morphological differentiation in Streptomyces coelicolor A3(2).
SC7A1 is a cosmid with an insert of chromosomal DNA from Streptomyces coelicolor A3(2). Its insertion into the chromosome of S. coelicolor strains caused a duplication of a segment of ca. 40 kb and delayed actinorhodin antibiotic production and sporulation, implying that SC7A1 carried a gene negatively affecting these processes. The subcloning of SC7A1 insert DNA resulted in the identification ...
متن کاملA system for the targeted amplification of bacterial gene clusters multiplies antibiotic yield in Streptomyces coelicolor.
Gene clusters found in bacterial species classified as Streptomyces encode the majority of known antibiotics as well as many pharmaceutically active compounds. A site-specific recombination system similar to those that mediate plasmid conjugation was engineered to catalyze tandem amplification of one of these gene clusters in a heterologous Streptomyces species. Three genetic elements were know...
متن کاملThe positive activator of cephamycin C and clavulanic acid production in Streptomyces clavuligerus is mistranslated in a bldA mutant.
In Streptomyces coelicolor bldA encodes the principal leucyl tRNA for translation of UUA codons and controls pigmented antibiotic production by the presence of TTA codons in the genes encoding the pathway-specific activators of actinorhodin and undecylprodigiosin biosynthesis. In Streptomyces clavuligerus the gene encoding the pathway-specific activator of both cephamycin C and clavulanic acid ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 188 19 شماره
صفحات -
تاریخ انتشار 2006